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The flow of an impinging non-Newtonian jet onto a solid flat plate is examined
theoretically in this study. Similarity solutions are sought for both shear-thinning and
shear-thickening fluids of the power-law type. The jet is assumed to spread out in a
thin layer bounded by a hydraulic jump. In addition to the stagnation-flow region,
the flow domain is divided into three main regions: a developing boundary layer, fully
viscous boundary layer and hydraulic jump. The anomalous behaviour of power-law
fluids at small shear rate is remedied by seeking a two-layer solution in each domain.
Such anomalies include the singularity of viscosity for shear-thinning fluids, and the
vanishing of viscosity as well the overshoot in velocity for shear-thickening fluids.
Although the rate of shear-thinning appears to affect significantly the film profile and
velocity, only the overall viscosity influences the position of the hydraulic jump.

1. Introduction
This study focuses on the analysis of the two-dimensional thin-film flow formed

when a free laminar jet of a non-Newtonian fluid impinges vertically onto and spreads
over a horizontal plate. The liquid spreads in a thin layer until the depth increases,
suddenly forming a hydraulic jump. The problem thus consists of obtaining the shape
of the free surface, the flow field within the film and the jump position. Both shear-
thinning and shear-thickening fluids will be considered. Although the impinging jet
of Newtonian fluids has been extensively investigated in the literature, little work has
been devoted to the impingement of a non-Newtonian jet.

The impingement of a Newtonian jet was considered by Watson (1964), who
examined both the radial and planar jet spread for steady laminar and turbulent
flows. Neglecting surface-tension effects and using a thin-film or boundary-layer
approach, Watson found that for a two-dimensional jet at impinging velocity U0,
the steady jet surface height (in units of half jet width (a) grows at a rate equal to
1.81/ReN , where ReN = aU0/ν is the Reynolds number, with ν being the kinematic
viscosity. A relation between the jump location and height was also obtained for both
laminar and turbulent flows. Watson’s theory was tested in a number of experimental
investigations, including those of Watson himself, Craik et al. (1981), Stevens & Webb
(1992), Bush & Aristoff (2003) and Baonga, Louahlia-Gualous & Imbert (2006). In
particular, Watson’s theoretical predictions for the free-surface velocity and film
thickness were experimentally verified by Stevens & Webb (1992) and Baonga et al.
(2006). In an effort to improve Watson’s theory, Bush & Aristoff (2003) included
the influence of surface tension for small radius circular jumps, leading to better
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agreement with experiment. It is, however, generally agreed that Watson’s theory is
adequate for circular jumps with large radius and height (see § 7 for further discussion).

For an impinging non-Newtonian jet, few studies are available. Kashkarov &
Mikhaelyan (1973) considered the problem of a two-dimensional laminar power-law
jet striking normally on a horizontal plate. However, they simply established a relation
between the velocity distribution and the rheological properties of the fluid. Gorla
(1977) extended the similarity solution of Watson (1964) to laminar swirling power-
law jet, and obtained the expressions for the free-surface radial velocity, growth of
the free surface and skin friction coefficient.

As the boundary layer develops from the stagnation region, it gradually absorbs the
whole of the flow until the viscous forces reach the free surface and the spreading jet
is in the fully viscous boundary-layer region in the form of thin-film flow. Thin-film
flow, in turn, has been extensively investigated in the literature. The influence of
inertia, gravity and substrate topography on the steady flow and early stages of flow
development of Newtonian and non-Newtonian thin films was previously examined
by Khayat and co-workers. In particular, in their work on Newtonian coating flow,
Khayat & Welke (2001) used Watson’s similarity solution (1964) for steady film
surface to assess the validity of their nonlinear formulation. Kim & Khayat (2002)
used a spectral method to obtain the solution for power-law fluid flowing on a
horizontal surface during early development. Khayat & Kim (2006) examined the
interplay between inertia and elasticity during the steady and transient coating flow
of an Oldroyd-B fluid.

A closely related problem to non-Newtonian jet spread flow is the boundary-layer
flow of non-Newtonian fluid, which has been the subject of theoretical and numerical
investigations. Early studies were conducted by Schowalter (1960), and Acrivos,
Shah & Petersen (1960), who considered the boundary-layer equations for a power-law
fluid. Schowalter (1960) demonstrated that similarity solutions are possible provided
the external velocity, U(x), behaves like xm, where x is the coordinate along the
surface of the body. The particular case m =0, which corresponds to the flow past
a flat plate, was solved by Acrivos et al. (1960). Similarity solutions for a power-
law fluid flow past a right-angle wedge (m =1/3) and along a wedge with opening
angle 2π/3(m = 1/2) were provided by Lee & Ames (1966) and Andersson & Irgens
(1988), respectively. Experimental studies of non-Newtonian boundary-layer flow are
less common. For Newtonian fluids, the boundary-layer assumption is valid at large
Reynolds number; the boundary-layer equations are obtained from the Navier–Stokes
equations by neglecting higher-order terms in the inverse of the Reynolds number.
In contrast, for shear-thinning fluids, the boundary-layer equations remain accurate
even when the Reynolds number is not large (Wu & Thompson 1996). This is
probably attributable to the high shearing in the boundary-layer region, with inertia
still expected to be dominant.

Although the power-law model often fits rheological data well over certain stress
ranges, and has the benefit of analytic simplicity, it is valid only in regions above a
certain minimum shear rate. Near a free surface or edge of the boundary layer where
the shear rate tends to zero, the effective viscosity tends to infinity for shear-thinning
fluids, and zero for shear-thickening fluids. Despite this fundamental shortcoming,
the power-law model is frequently used in studies of boundary-layer flow and free-
surface flow (Acrivos et al. 1960; Andersson & Irgens 1988; Weinstein, Ruschak &
Ng 2003). Although no pronounced side effects are reported from using the power-
law model, some curious physical behaviour was nevertheless reported. Acrivos et al.
(1960) found that for shear-thickening fluids, the boundary layer terminates at a
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finite distance (on the boundary-layer length scale) from the solid plate. According
to Denier & Dabrowski (2004), this observation indicates a physically unrealistic
overshoot of the streamwise velocity for boundary-layer flow (that is, a region in which
the streamwise velocity exceeds the velocity in the outer potential flow). For shear-
thinning fluids, Denier & Dabrowski (2004) also alluded to the difficulty in the case of
an algebraically decaying velocity field with regards to matching such a solution to an
inviscid outer (potential) flow. The possibility of such matching is implicitly assumed
in the boundary-layer approximation. They also pointed to the parallel between this
algebraic decay and that for Newtonian fluids; general similarity solutions, leading
to the Falkner–Skan similarity equation, possess algebraically decaying behaviour.

The conditions for successful matching of these solutions onto an outer potential
flow were examined by Brown & Stewartson (1965), who also discussed the relevance
of similarity solutions to the asymptotic description of a real boundary layer. They
demonstrated that solutions exhibiting algebraic decay are not appropriate if such
solutions are to be matched onto an outer potential flow. However, the case here
for the spread of a non-Newtonian jet is somewhat complicated by the simultaneous
appearance of nonlinearities resulting from inertia, free surface and viscosity. The
nonlinear terms in the apparent viscosity, which are typically neglected in boundary-
layer theory, prove crucial in correctly describing the matching of the inner boundary
layer with an outer potential flow. Denier & Dabrowski (2004) considered the problem
of the boundary-layer flow of a power-law fluid and solved the boundary-layer
equations in similarity form. For shear-thickening fluids, they provided a rigorous
mathematical justification for the existence of a finite-width boundary layer, and
introduced a secondary viscous adjustment layer to smooth out the solution and to
ensure correct matching with the far-field boundary conditions. In the case of shear-
thinning fluids, they showed that smooth matching between the inner algebraically
decaying solutions and an outer uniform flow can be achieved via the introduction
of a viscous diffusion layer.

The focus of the current study is on the interplay between inertia and non-
Newtonian effects for thin-film flow. Watson’s (1964) assumptions remain valid,
particularly those of moderately large inertia effect and a jump occurring far from
impingement. Consequently, surface tension effects will be neglected. The gravitational
pressure gradient is similarly neglected except in the hydraulic jump region. In § 2,
the large-Reynolds-number limit of the conservation equations for a power-law fluid
are established. These are shown to reduce to a modified form of the classical
boundary-layer equations, with the inclusion of a nonlinear term to model the non-
uniform vertical diffusion of viscosity. Section 3 considers the fully developed viscous
boundary-layer region where a similarity solution is obtained. For both shear-thinning
and shear-thickening fluids, a thin outer adjustment viscous layer is required near the
free surface in order to smooth out the inner solution as the free surface is approached.
Similarly, in § 4 the numerical similarity solution is sought in the developing boundary-
layer region, for both shear-thinning and shear-thickening fluids. It is demonstrated
that a viscous adjustment layer is required in order to ensure a smooth asymptotic
matching to the far-outer-field flow solution. In § 5, the flow in the entire physical
domain is obtained upon matching the flows between the developing and fully
viscous boundary-layer regions. Section 6 considers an approximate solution for the
developing boundary-layer region, and the corresponding approximate solution to
the flow in the entire physical domain is obtained. In § 7, the principle of momentum
is applied at the hydraulic jump, and a relation is derived between the position and
height of the jump. Finally, some concluding remarks are given in § 8.
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Figure 1. Schematic illustration of the symmetric plane jet flow impinging on a flat solid
plate. Note that the flow variables are dimensionless.

2. Governing equations and boundary conditions
Consider the steady laminar incompressible flow of a planar jet of a non-Newtonian

fluid of width 2a impinging at a (uniform) velocity U0 on a fixed flat plate lying
normally to the jet direction. The flow configuration is depicted schematically in
figure 1. Only half of the physical domain is shown in the figure because of flow
symmetry. In this work, starred variables are dimensional, and dimensionless variables
will be introduced shortly (note that dimensionless variables are used in the figure
for clarity). The x∗-axis is taken along the flat plate and the y∗-axis coincides with
the jet axis. Following Watson (1964), four distinct regions of flow are identified for a
power-law fluid, with smooth passage from one region to the next: the stagnation-flow
region (i); the boundary-layer region (ii); the fully viscous thin-film region (iii). Under
some flow conditions, a hydraulic jump may form in region (iv).

In the vicinity of the stagnation point, in region (i), x∗ = O(a) The speed outside
the boundary layer rises rapidly from 0 at the stagnation point to the impingement
velocity U0 in the inviscid far region. For a Newtonian fluid, the boundary-layer
thickness δ∗

N remains constant and is estimated in terms of the strength of the
outside potential flow (see Schlichting 1979) as δ∗

N = O(
√

νε̇/U0), where ε̇ is the rate
of streamwise elongation of the potential flow. In contrast, for a power-law fluid,
Sarweswar & Manohar (1968) showed that the boundary-layer thickness depends on
position, and is written here as

δ∗ =

[
nm

(
δ∗2
N

5.76ν

)2−n

x∗(n−1)

]1/(n+1)

,

where m and n are the consistency coefficient and power-law index, respectively.
Although the boundary layer varies as (x∗)(n−1)/(n+1) in region (i), it grows as (x∗)1/(n+1)

in region (ii), as will be shown in § 5. Thus, for shear-thinning fluids, the boundary-
layer thickness exhibits a singularity at the stagnation point and decays algebraically
with distance. Figure 1 depicts schematically the flow for shear-thinning fluids (n< 1)
in the main figure, where δ∗ is taken to decay to a negligible level between regions
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(i) and (ii) before it begins to grow again. Also added, as insets, are the cases of a
Newtonian (n= 1) and shear-thickening (n> 1) fluids in region (i). Thus, the constant
boundary-layer thickness in region (i) for a Newtonian fluid grows as

√
x∗ far from

the stagnation point in region (ii). That for shear-thickening fluids grows from zero
in the stagnation-flow region at a smaller rate than in region (ii).

For greater values of x∗, in region (ii), the elongation rate weakens with distance,
but the flow remains two-dimensional as a result of non-negligible surface curvature.
The speed outside the boundary layer remains almost constant, equal to U0, as the
fluid here is unaffected by the viscous stresses. If x∗ � a, so that the flow in region
(ii) is not affected by the stagnation flow in region (i), the flow can be determined
by seeking a solution of the boundary-layer equations of the Blasius type. This
region, a � x∗< x∗

0 , will be referred to as the developing boundary-layer region, with
boundary-layer thickness δ∗(x∗), outside which the flow is inviscid and constant. Here
x∗

0 is the location of the transition point at which viscous stresses become appreciable
right up to the free surface where the whole flow is of the boundary-layer type. At this
point, the velocity profile changes from the Blasius type to the similarity profile. The
flow in region (iii), x∗>x∗

0 , which will be referred to as the fully-developed boundary-
layer region, is bounded by the flat plate and the free surface y∗ = h∗(x∗). Finally, the
hydraulic jump in region (iv) is of height H ∗ and occurs at a location x∗ = x∗

j , which
can be larger or smaller than x∗

0 since the jump may occur at any point in the flow.
In this work, the fluid is described by the Ostwald–de Waele power-law mode1 (see,

for instance, Bird, Stewart & Lightfoot 2002), and the excess stress tensor is given by

τ ∗ = μ∗D∗ ≡ m
[

1
2
(D∗ : D∗)

](n−1)/2
D∗, (2.1)

where D∗ = ∇∗v∗ + ∇∗v∗t is the rate-of-strain tensor, with v∗ being the velocity vector,
and t denotes matrix transposition. In this case, the viscosity μ∗ is given explicitly by

μ∗ = m[2(u∗
x)

2 + 2(v∗
y)

2 + (u∗
y + v∗

x)
2](n−1)/2, (2.2)

where u∗ and v∗ are the velocity components in the horizontal and vertical directions,
respectively. Note that a subscript x or y denotes partial differentiation. The film
thickness is assumed to be small everywhere, and the classical thin-film theory is
assumed to hold. In this work, aRe and a are taken as length scales in the x and y
directions, respectively, where Re = ρU 2−n

0 an/m is the generalized Reynolds number
for the jet flow. This expression suggests that the range of validity of the boundary-
layer assumption may be limited to n< 2 (Acrivos et al. 1960). The boundary-layer
thickness in region (i) is expressed in dimensionless form in terms of the Reynolds
number and the boundary-layer thickness for the reference Newtonian flow as

δ =

[
n

(
ReNδ2

N

5.76Re

)2−n

x(n−1)

]1/(n+1)

.

The velocity scales in the x and y directions are taken as U0 and U0/Re, respectively.
In this case, the dimensionless viscosity, μ, is given by

μ =
[
u2

y + 2ε2
(
uyvx + u2

x + v2
y

)
+ ε4v2

x

](n−1)/2
, (2.3)

where ε = 1/Re, and u and v are the dimensionless velocity components in the x and y
directions, respectively. The non-dimensionalized conservation equations are written
as

ux + vy = 0, (2.4a)
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uux + vuy = 2ε2 (μux)x + [μ(uy + ε2vx)]y. (2.4b)

In this work, Re is assumed to be moderately large, and ε will be the small parameter
in the problem. However, as will be seen later, higher-order terms appearing in (2.3)
and (2.4) are not uniformly negligible. If only leading-order terms in ε are retained,
the momentum equation (2.4b) for a thin jet reduces to:

uux + vuy = (|uy |n−1uy)y. (2.5)

At the plate, the no-slip and no-penetration conditions are assumed to hold, so that

u(x, 0) = v(x, 0) = 0. (2.6)

The flow field is sought separately in the developing boundary-layer region (x <x0),
fully developed boundary-layer region (x > x0), and hydraulic jump region. It is
convenient to first examine the flow in the x >x0 region.

3. Fully developed viscous boundary-layer flow (x > x0)

Consider first the flow in the fully developed boundary-layer region (iii) or x > x0.
The present study is focused on film flow in the visco-inertial range. It is argued
here that the surface-tension effect is negligible for two main reasons. First, the film
is assumed to be thin. More importantly, the local curvature of the film free surface
is assumed to be sufficiently small for the current boundary-layer approach to hold.
Secondly, the surface-tension coefficient of typical polymeric fluids is small. Lee & Mei
(1996) examined the formation of steady solitary waves on inclined Newtonian thin-
film flow, and determined the dependence of the Weber number of different liquids on
the Reynolds number for both small and large angles of inclination. They found that
the surface-tension effect decreases strongly with inertia. Lee & Mei’s results show that
the capillary number, CaN = μU0/σ , for a Newtonian fluid of viscosity μ and surface
tension σ , behaves roughly as CaN ∼ Re2

N/ε. Here ε is the ratio of film thickness and
length. This suggests that the effect of surface tension for a thin film is O(ε4/Re2

N ).
Note that the surface tension effect for thin-film flow is O(ε3/CaN ) (see Khayat &
Kim 2006). Omodei (1979) carried out a two-dimensional finite-element simulation
of steady Newtonian jet flow. He found that the height of the free surface changes by
8% when the capillary number changes from 0.83 to infinity at a Reynolds number
(based on channel exit half-height) equal to 1, compared to a change in jet thickness
of less than 1 % when the Reynolds number is greater than 10. A further drop in
capillary number is thus required to observe any palpable change in jet height at
moderately large Reynolds number. However, further decrease in CaN is not realistic
according to experiment. See, for instance, the early study by Goren & Wronski (1966)
on capillary jet flow. The capillary number can be large even for some (essentially)
Newtonian fluids with high viscosity such as polybutene oils. As an illustration,
consider polybutene oil with mean viscosity, μ = 80 mPa s, density ρ = 1200 kg m−3,
and surface-tension coefficient σ = 50 mN m−1. The film is assumed to move at 12 m s−1

out of an annulus of 2mm gap, on a cylindrical substrate of radius 20 mm. In this
case, ε = 0.1, ReN = 36 and CaN = 19.2, making a surface tension effect of O(10−5).
The surface-tension effect is expected to be even less significant for typical polymeric
films because of higher viscosity and lower surface-tension coefficient. In polymer
processing, such as the injection moulding of polybutene (see Behrens et al. 1987), the
capillary number is O(10–100). Polymer solution jets take generally longer to break
up than Newtonian jets of comparable (shear) viscosity; polymeric jets may not form
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droplets at all (Gordon, Yerushalmi & Shinnar 1973; Christanti & Walker 2002).
Melt fracture occurs essentially in the absence of the surface-tension effect for elastic
fluids. Even weakly elastic fluids can exhibit moderately large capillary numbers,
such as 0.5 and 0.75 % polyethylene oxides moving at a speed of 10 ms−1, with
capillary numbers equal to 1.2 and 11, respectively. Strongly elastic polyacrylamide
solutions of 0.1 to 0.75 % lead to corresponding capillary numbers in the range 16
to 600 (Middleman 1987). In order to illustrate the situation for shear-thinning and
shear-thickening fluids, a generalized capillary number must be introduced, which
can be written as Ca = mUn

0 /an−1σ . Since a is small, the surface-tension effect can be
important for shear-thinning fluids relative to Newtonian fluids and especially relative
to shear-thickening fluids. Even for shear-thinning fluids, however, surface tension is
not expected to play a significant role for thin films. Referring to the data in figure 11,
consider a jet of half width a =8 mm, impinging at velocity U0 = 8 ms−1, with m =100
Pa sn and n= 0.2. In this case, Ca = 6.37 for a fluid with σ = 50 mN m−1, making the
surface-tension effect, at most, O(ε3).

Let U (x) ≡ u(x, y = h) and V (x) ≡ v(x, y = h) denote the velocity components at the
free surface. In the absence of surface tension, the kinematic and dynamic conditions
can be written, respectively, as

V (x) = U (x)h′(x), (3.1)

uy(x, y = h) = 0, (3.2)

where a prime denotes total differentiation. In this case, the following similarity
solution can be used, namely

u(x, y) = U (x)f (η), (3.3)

where η = y/h(x) is the similarity variable. The following boundary conditions on f
must be satisfied:

f (0) = 0, f (1) = 1, f ′(1) = 0. (3.4)

The constancy of the volume flux is expressed as

∫ h(x)

0

u(x, y) dy = U (x)h(x)

∫ 1

0

f (η) dη = 1. (3.5)

Hence, U (x)h(x) is constant. Integrating (2.4a) and using the similarity solution (3.3)
leads to

v(x, y) = h′(x)ηf (η)U (x). (3.6)

Note that (3.6) reduces to (3.1) at y = h(x). Upon substituting u and v from (3.3) and
(3.6), respectively, the equation of motion (2.5) reduces to

hn+1

nUn−1
U ′ = f −2(f ′)n−1f ′′ = −3cn+1

n + 1
, (3.7)

where c is an unknown constant to be determined. For shear-thickening fluids (n> 1),
the equation for f on the right-hand side of (3.7) becomes singular in the limit η =1
when the third condition in (3.4) is imposed. However, although this singularity is
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removable (see below), it reflects a physical anomaly as the viscosity vanishes at the
free surface for shear-thickening fluids, and becomes infinite for shear-thinning fluids.
An asymptotic solution is therefore required as the free surface is approached, and
will be carried out shortly. Multiplying (3.7) by f ′ and integrating once with respect
to η and using the third boundary condition in (3.4), gives

f ′ = c(1 − f 3)1/(n+1). (3.8)

The unknown c is found upon integrating (3.8) over the interval [0, 1] and using the
condition f (1) = 1 from (3.4), or

c =
	

(
1
3

)
	(n/(n + 1))

3	((4n + 1)/(3n + 3))
. (3.9)

Multiplying (3.8) by f and integrating, (3.5) leads to the following relation between U
and h, namely

U (x) h (x) =
c

Fn

, (3.10)

where Fn = 	( 2
3
)	(n/(n + 1))/3	)((5n + 2)/(3n + 3)). Equation (3.7) can now be

integrated using (3.10) to obtain the expression for the streamwise velocity component
at the free surface, or

U (x � x0) =

⎧⎪⎨
⎪⎩

[
n + 1

3n(2n − 1)F n+1
n

1

(x + l)

]1/(2n−1)

, n 
= 1
2
,

e−1.3297x+l , n = 1
2
,

(3.11)

as well as the film thickness

h (x � x0) =

⎧⎪⎨
⎪⎩

c

[
3n (2n − 1)

(n + 1) F n−2
n

(x + l)

]1/(2n−1)

, n 
= 1
2
,

1.461e1.3297x−l , n = 1
2
.

(3.12)

Here l is an integration constant, which is determined upon matching the solution
with that from the developing boundary-layer region (ii) (x <x0). Clearly, from (3.9),
c is positive. In this case, (3.11) and (3.12) indicate, as expected, that U and h are
decreasing and increasing functions of x, respectively, for any fluid. Finally, note
that (3.11) and (3.12) reduce to Watson’s results (1964) for planar Newtonian jet if
n=1. In this case, no further treatment is required. In contrast, for power-law fluids,
additional issues require further consideration.

3.1. Asymptotic form of the outer-layer solution for η → 1

The third boundary condition in (3.4) indicates that, as η → 1, the leading-order term in
the viscosity expression (2.3) vanishes for shear-thickening fluids, and becomes infinite
for shear-thinning fluids. In this case, the thin-film approximation for a power-law
fluid becomes invalid near the free surface. This anomaly is also encountered in
the boundary-layer flow of power-law fluids, which was considered by Denier &
Dabrowski (2004). Following their treatment, a thin outer adjustment viscous layer
near the free surface is introduced in order to smooth out the inner solution as
the free surface is approached. The inner and outer layers for the region x >x0

are schematically illustrated in figure 2 for a shear-thinning fluid. The layers in the
developing boundary layer region (x < x0) are also shown in the figure for later
reference.

In order to determine the correct flow structure near the free surface (η → 1), a shift
in origin is taken by setting z = 1−η (see figure 2). In this case, the small-z asymptotic
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Figure 2. Outer- (I) and inner-layer (III) domains in the developing (x <x0) and fully
developed viscous (x > x0) boundary-layer flow regions schematically illustrated for shear-
thinning fluid. The boundary layer is shown as dashed curve.

form for f can be written as

f = 1 + γ zb, 0 < z � 1, (3.13)

which, upon substitution in (3.7), gives b = (n + 1)/n. In this case, γ is negative and
is given by

γ = −31/n

(
nc

n + 1

)(n+1)/n

. (3.14)

The asymptotic form (3.13) is valid in the outer-layer region, including the interface
between the inner and outer layers. This form allows the imposition of boundary
conditions at the interface (at some suitable small z) and therefore the integration of
(3.7), thus leading to the inner solution of the problem. The thickness of the outer
layer or the position of the interface is estimated next.

3.2. Estimation of the outer-layer thickness and the inner-layer solution

Evaluation of the higher-order terms in the viscosity expression (2.3) indicates that
some of these terms become important as η → 1, and therefore cannot be neglected.
In particular, using the asymptotic form (3.13), the order of the two dominant terms
in (2.3) for small z is found to be u2

y ∼ (U/h)2z2/n and ε2u2
x ∼ Re−2U ′2. The two terms

become comparable when z = O(Re−n). It is therefore at this height that the simple
power-law expression μ = |uy |n−1 for the viscosity of a thin film is expected to break
down. This simultaneously gives an estimate of the thickness of the outer layer and
the position of the interface. Clearly, the outer layer is expected to be small since Re is
relatively large (Re � 1). The thickness of the outer layer is smaller for the more shear
thickening fluids. Now that the interface position is estimated, f in turn is determined
by integrating (3.7) over the inner-layer region, between the plate z = 1) and the
interface. The integration is started at the interface using a fourth-order Runge–
Kutta quadrature routine, coupled with a simple bisection scheme to determine the
unknown c (and γ ), until the boundary condition at the plate is satisfied to within
some desired tolerance, of O(10−6). Expression (3.9) provides an initial guess for c.
The thickness of the outer layer or the position of the interface depends on Re, and,
in turn, should affect the inner solution. However, calculations show that the choice
of Re does not change significantly the velocity profile in the inner layer, but changes
only the position of the interface. The influence of shear thinning and shear thickening
on the flow is examined through the similarity profiles f (η) shown in figure 3. The
actual velocity profiles are shown in figure 16. Although the velocity profiles remain



420 J. Zhao and R. E. Khayat

1.0

n = 1, 0.6, 0.5, 0.4, 0.2

n = 1, 1.2, 1.4, 1.6, 1.8

0.8

0.6

f (η)

0.4

0.2

0 0.2 0.4 0.6 0.8 1.0
η

Figure 3. Velocity profiles f(η) in the fully viscous boundary-layer region (x > x0) for
shear-thinning and shear-thickening jets.

qualitatively unchanged as n is varied, a couple of observations can be made. For
shear-thinning fluids (n < 1), the power-law index n has a stronger influence on the
slope of the profiles near the plate and free surface. As n decreases the inviscid limit
behaviour (plug flow) is clearly approached. The slope of f at the plate, f ′(η = 0), is
an important characteristic of the solution because of its relation to the shear stress
at the plate, τ0(x) ≡ τxy(x, y = 0), which, in dimensionless form, is

τ0 (x > x0) = μuy |
y=0 =

1

Re

(
U

h

)n

[f ′(0)]n. (3.15)

Here ρU 2
0 is taken as a reference for the shear stress and μ = un−1

y . Figure 4 shows
the dependence of f ′ (η =0) on n, indicating an apparent decrease in shearing for
the more shear-thickening fluids. However, the exact value of the shear stress at the
plate is of course established only when the film thickness h and velocity U are
determined (see later). As mentioned earlier, the analytical expression for c in (3.9) is
used as an initial guess to obtain the numerical solution. It is found that the analytical
prediction f ′ (η =0) = c agrees to within 10−4 with its exact value shown in figure 4.
This confirms the validity of the analytical expressions (3.11) and (3.12) for the film
velocity and profile, respectively.

3.3. Outer-layer solution

The flow field in the outer layer in region (iii) is now determined by first letting
y = h(x) − Re−nξ . In this case, z = Re−n (ξ/h), and ξ =O (1). The asymptotic form
(3.13), and expressions (3.3) and (3.6), suggest the following form for the velocity
components in the outer layer region, namely

u = U (x) + Re−(n+1)U1(x, ξ ) + · · · , v = Uh′ + Re−nV1(x, ξ ) · · · , (3.16)
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Figure 4. Dependence of the velocity gradient f ′(0) at the plate on the power-law index n in
the fully viscous boundary-layer region (x > x0). �, n= 1, f ′(0) = 1.40218 (Watson 1964).

where higher-order terms are clearly negligible at large Reynolds number. At the
interface, U1(x, ξ ) and V1(x, ξ ) are found to be

U1(x, ξ ) = Uγ

(
ξ

h

)(n+1)/n

, V1(x, ξ ) = −h′U

h
ξ as ξ → ∞. (3.17)

On the other hand, substitution of u and v from (3.16) into the streamwise momentum
equation (2.4b) leads, after some simplification, to the following equation for U1(x, ξ ):

UU ′ =
∂

∂ξ

(
μ1

∂U1

∂ξ

)
, (3.18)

where the viscosity function μ1 is given by

μ1 =

[(
∂U1

∂ξ

)2

+ 2U ′2 + 2

(
h′U

h

)2
](n−1)/2

. (3.19)

Equation (3.18) must be integrated subject to the following boundary conditions:

U1 (ξ = 0) = 0, U1 → Uγ (ξ/h)(n+1)/n as ξ → ∞. (3.20)

These conditions ensure the correct asymptotic decay of U1 near the free surface
(ξ → 0), and the correct form at the interface (ξ → ∞). Equation (3.18) is conveniently
rescaled by letting U1 = b0F , ξ = b1ζ where b0 =B (n+1)/2/(UU ′), b1 = − αBn/2/(UU ′),
with B = 2(U ′)2 + 2(h′U/h)2. From (3.9), c is positive, and thus from (3.7), U ′(x) is
negative. Therefore b0 is negative and b1 is positive since B is positive. In this case,
the equation for F (ζ ) can be obtained from (3.18) and (3.19)

d

dζ

[
((F ′)2 + 1)(n−1)/2F ′] = 1, (3.21)
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Figure 5. Plots of F versus ζ for n= 0.4, 0.6, 0.8,. . ., 2. Asymptotic solutions (dashed
curves) are also shown for shear-thinning jets.

which must be integrated subject to the following boundary conditions:

F (ζ = 0) = 0, F → n

n + 1
ζ (n+1)/n as ζ → ∞. (3.22)

If (3.21) is integrated once with respect to ζ , the asymptotic condition F ′ → ζ 1/n as
ζ → ∞ can be simultaneously satisfied, leading to

((F ′)2 + 1)(n−1)/2F ′ = ζ. (3.23)

It is clear from (3.23) that F ′(0) = 0. This condition can then be used as a second
(initial) boundary condition, in addition to F(0) = 0, and (3.21) is integrated
numerically subject to the two homogeneous initial conditions. The profiles F (ζ ) for
both shear-thinning (n < 1) and shear-thickening (n> 1) fluids are shown in figure 5.
The special case for a Newtonian fluid (n = 1) is also included, which corresponds
to F = ζ 2/2. Recalling the definition of F, it is observed from figure 5 that the
drop in velocity from its value at the free surface increases strongly for the more
shear-thinning fluids. In addition, the asymptotic form in (3.20) indicates that this
drop is more significant for a flow with larger free-surface velocity. Finally, the
asymptotic behaviour for F is added to the figure for reference, which also reflects
the smoothness between the inner- and outer-layer solutions.

4. Developing boundary-layer flow (x <x0)

In region (ii), or the developing boundary-layer region (1/Re � x <x0), the
flow is assumed to be sufficiently inertial for inviscid flow to prevail between the
boundary-layer limit and the free surface (see figure 1). In this case, (2.4a) and (2.5)
must be solved subject to conditions (2.6) and the following condition outside the
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boundary layer:

u (1/Re <x <x0, δ � y <h) = 1. (4.1)

The developing boundary-layer equations can he solved numerically or approximately.
Both approaches are considered in the present work. The approximate solution will
be outlined in § 6. Since the free-stream velocity is constant (equal to 1), the boundary-
layer equations admit a self-similar profile. The streamfunction is then expressed as

ψ = x1/(n+1)f̄ (η̄), (4.2)

where the similarity variables f̄ and η̄ are re-defined here. In this case,

u =
∂ψ

∂y
= f̄

′
(η̄), v = −∂ψ

∂x
=

x−n/(n+1)

n + 1
(η̄f̄

′ − f̄ ), (4.3)

where η̄ = yx−1/(n+1). In region (ii), the total depth h of the flow is O(1) because of
continuity. Similarly to Newtonian fluids, it is not difficult to show that the dimensional
boundary-layer thickness for power-law fluids can be estimated by assessing the order
of each term in the boundary-layer equations, leading to δ∗ = O(mUn−2

0 x∗)1/(n+1).
Equivalently, the order of magnitude for the dimensionless boundary-layer thickness
is δ = O(x1/(n+1)). Thus, the boundary-layer thickness becomes comparable with h when
x = O(1) or x∗ =O(aRe). Consequently, since the solution (4.2) is valid only when
x∗ � a, the Reynolds number of the incident jet must be large, or Re � 1. In region
(iii), x =O(1), and the speed at the free surface is of the same order of magnitude as
U0, so that U= O(1). Also, since there is a transition from the Blasius-type profile (4.2)
to the similarity solution (3.3), it follows from (3.11) that x + l= O(1). Thus l= O(1),
of the same order as the length scale for the streamwise development of the boundary
layer in regions (ii) to (iii). In this case, since Re is large, l∗ � a. Watson (1964) argued
that, ultimately the way in which the flow originates (at the stagnation point) becomes
unimportant, and the similarity solution of § 3 is valid, with an appropriate choice of
the length l. However, the value of l depends on the development of the flow in the
inner regions, but its order of magnitude is possible to estimate at this stage as above.
Upon substituting u and v into (2.4b), the following equation for f̄ is obtained, namely

f̄
′′′

+
f̄ (f̄

′′
)2−n

n(n + 1)
= 0, (4.4)

subject to the boundary conditions

f̄ = f̄
′
= 0 at η̄ = 0, f̄

′ → 1 as η̄ → ∞. (4.5)

This is a nonlinear problem of the two-point boundary-value type, which is solved

numerically. Following Denier & Dabrowski (2004), the asymptotic form for f̄
′
in the

limit η̄ → ∞ is expressed approximately as

f̄
′
= 1 + Aη̄(n+1)/(n−1) + · · · (4.6)

where A= −(2n)1/(1−n) |(n + 1)/(n − 1)|n/(1−n)
. This asymptotic form (4.6) clearly shows

that for shear-thinning fluids (n< 1), f̄
′ → 1 as η̄ → ∞. Note that for a Newtonian

fluid (n = 1), (4.6) breaks down owing to the singularity in this limit. This indicates

that f̄
′
has faster than algebraic asymptotic behaviour for Newtonian fluids, which is

reflected in the exponential behaviour of the solution of the classical Blasius flow over
a flat plate (see also below). On the other hand, for shear-thickening fluids (n> 1),

f̄
′
fails to approach unity in the limit η̄ → ∞. Moreover, no other asymptotic form
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can be deduced from (4.4) for n > 1. In fact, it is observed that for shear-thickening
fluids, equation (4.4), when solved subject to conditions (4.5), leads to an overshoot in
velocity (u > 1) for large η̄. This suggests that the boundary layer for shear-thickening
fluids must have a finite thickness. This point was recognized first by Acrivos et al.
(1960), who found that the boundary-layer region for shear-thickening fluids cannot
be infinite as for Newtonian or shear-thinning fluids. Denier & Dabrowski (2004)

re-visited this issue and observed that the boundary condition f̄
′
(η → ∞) = 1 does

not describe the correct behaviour for shear-thickening fluids in the far-field region.
They also pointed out that some care must be taken to ensure that the numerical
solution satisfies the correct asymptotic behaviour.

Consequently, and following Denier & Dabrowski (2004), the problem for shear-
thickening fluids is re-posed as a free-boundary problem, and the outer limit, η̄ = η̄C ,
of the boundary layer now becomes an unknown part of the problem. In this case,
(4.4) is solved subject to the following boundary conditions

f̄ (η̄ = 0) = f̄
′
(η̄ = 0) = 0, f̄

′
(η̄ = η̄C) = 1, f̄

′′
(η̄ = η̄C) = 0. (4.7)

The fourth condition in (4.7) ensures that the streamwise velocity component does
not overshoot its far-field unity value at the outer edge of the boundary layer. This
system may appear to be over-specified. However, η̄C is regarded as unknown, and
is thus determined by solving the two-point boundary-value problem (4.4) subject to
conditions (4.7). Here, problem (4.4) may be compared to a free-surface flow problem,
with η̄C corresponding to the free-surface height, and the fourth condition in (4.7)
corresponding to the kinematic condition. As suggested by Denier & Dabrowski
(2004), it is useful to make a shift of coordinates so as to define the origin to be at the
critical point η̄ = η̄C (see figure 2). Thus, let z = η̄C − η̄ represent the coordinate shift.
In order to integrate numerically the transformed equation, the small-z asymptotic
form for f̄ is employed to start the calculation at some suitably chosen �z. This
asymptotic form is readily shown to be

f̄ = β − z + θzk, (4.8)

which, upon substitution into (4.4), gives

1

θ
|θ |2−n

= n(n + 1)kn−1(k − 1)n−1(k − 2)β−1, k =
2n − 1

n − 1
. (4.9)

Here β is an unknown, which is determined numerically. The asymptotic form (4.8)
constitutes the boundary condition at the interface for the solution in the inner region,
which is obtained by integrating (4.4) subject to the boundary conditions at the plate.
The position of the interface is estimated next.

4.1. The inner-layer solution

Equation (4.4) is based on the assumption that its solution matches smoothly onto
the outer inviscid flow. However, as Denier & Dabrowski (2004) pointed out, there
exists a discontinuity in the far-field flow domain. This discontinuity is due to the
power-law model for viscosity μ = |uy |n−1

, which becomes invalid in the far field.
The power-law model is the simplified form of the viscosity function (2.3a) after
neglecting higher-order terms in ε, and is only valid in regions with certain minimum
shear rate. In the far field, where the velocity gradient tends to zero, the power-law
model breaks down and becomes obviously unrealistic, leading to infinite viscosity
for shear-thinning fluids (n < 1) and zero viscosity for shear-thickening fluids (n> 1)
.This anomaly is also the underlying cause of the need for a finite width of the



Spread of a non-Newtonian liquid jet over a horizontal plate 425

boundary layer for shear-thickening fluids. Denier & Dabrowski (2004) demonstrated,
for both shear-thinning and shear-thickening fluids, that the simplified boundary-layer
equations are only a first step in describing the flow behaviour for a power-law fluid at
high Reynolds number. The discontinuity in flow can be smoothed out by introducing
a thin viscous transition layer, which allows uniform matching with the outer inviscid
flow. The flow domain where the power-law model is valid constitutes the inner layer.
The inner and transition layers are schematically illustrated in figure 2 for x < x0.
Note that for shear-thickening fluids, the transition layer includes the η̄C boundary.

For shear-thickening fluids, the inner solution can be obtained by integrating the
transformed equation (4.4) with respect to z from the interface to the plate. The
asymptotic form (4.8) constitutes the boundary condition at the interface. In order
to determine the position of the interface, it is helpful to first observe that the
evaluation of the higher-order terms in the viscosity expression (2.3) indicates that
some of these terms become important as η → η̄C , and therefore cannot be neglected.
In particular, using the asymptotic form (4.8), the order of the two dominant terms in
(2.3) for small z is found to be u2

y ∼ x−2/(n+1)z2/(n−1) and ε2uyvx = Re−2x−2z1/(n−1). The
two terms become comparable when z = O (Re−2(n−1)). It is therefore at this height
that the simple expression μ = |uy |n−1

is expected to break down. This simultaneously
gives an estimate of the position of the interface. Clearly, this distance between the
interface and the critical point ηc is expected to be small since Re is relatively large
(Re � 1). Similarly to the fully viscous boundary-layer region (ii) in § 3, the position
of the interface is found to be higher for the more shear-thickening fluids. Now,
since the interface position is estimated, f̄ in turn can be determined by integrating
(4.4) from the interface, z = O(Re−2(n−1)), to the plate (z = η̄c), where f̄ = df̄ /dz =0
is satisfied to within some desired tolerance, O(10−6) in the present case. This was
accomplished using a fourth-order Runge–Kutta quadrature routine, coupled with a
simple bisection scheme to determine the unknown β (or equivalently θ) and η̄c.

Similarly, for shear-thinning fluids (n < 1), it is found that wheny = O(Re1−n), the
viscosity expression (2.3) breaks down. This simultaneously gives an estimate of the
position of the interface between the inner and transition layer. Clearly, the interface
is far from the plate, i.e. y = O(Re1−n) � 1, since Re is relatively large and n < 1.
Therefore, the inner-layer solution for shear-thinning fluids can be easily obtained
by integrating (4.4) using the first two boundary conditions of (4.5) at the plate and
far-field asymptotic condition (4.6) where η̄ = O(Re1−n). This was accomplished using
a fourth-order Runge–Kutta quadrature routine, coupled with a simple bisection

scheme to determine the unknown velocity gradient f̄
′′
(0) at the plate.

The similarity profiles in the inner-layer region and for x < x0 are shown in figure 6.
The actual velocity profiles are shown in figure 16. It is observed from figure 6 that
the similarity profile changes dramatically as the power-law index n is varied. While

the dependence of f̄
′
on n is monotonic (essentially linear) for shear-thickening fluids,

approaching a plug-flow behaviour for large n, it is non-monotonic for shear-thinning
fluids. The rate of approach towards the inviscid limit is much slower for the more
shear-thinning fluid. This rate can be estimated from (4.6), which, for instance, is
O(η−1.5) for n = 0.2 and O(η−4) for n= 0.6. Figure 7 shows the variation of the critical
position η̄c with n. The rate of decay of the critical position with n can be estimated
for a fluid near Newtonian, and for large n to be, respectively,

η̄c ≈ 0.018n−11.6 (1 < n < 1.4) , (4.10a)

and η̄c ≈ 8.2n−0.96 (n > 2) . (4.10b)
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The dimensionless shear stress at the plate defined in (3.15) now becomes

τ0 (x < x0) =
[f̄ (0)]n

Rexn/(n+1)
, (4.11)
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which indicates that the shear stress at the plate decreases faster with x for shear-
thickening fluids than for shear-thinning fluids, roughly as 1/x (for large n) and 1/xn

(for small n), respectively. The shear stress is established only when the extent of the
developing boundary-layer region, x0, is determined (see later). For now, the extent
of shearing in the developing boundary-layer region can be estimated from the value

of f̄
′′
(0). Figure 6 shows that the power-law index n has a strong influence on f̄

′′
(0)

for shear-thinning fluids. This complex dependence is depicted in figure 8, which
displays a strong decay in shearing as n increases from zero. However, there is a
minimum that follows at n � 0.7, which suggests that this resistance to movement is
halted as n increases. For weakly shear-thinning fluids (n > 0.7) and shear-thickening
fluids, the fluid experiences increasing resistance to movement with n. In this case,
the velocity gradient f ′′ (0) ≈ 0.067n + 0.265 (for n > 1). Figures 6, 7 and 8 therefore
clearly illustrates the behaviour expected for highly shear-thinning (n < 0.5) and highly
shear-thickening fluids (n > 1.5). In the former case, the jet tends to behave as a
dilute gas upon impingement, exhibiting high shearing near the plate, but increasingly
lesser movement as n decreases (see figure 6). In the latter case, the jet exhibits an
increase in shearing near the plate as n increases, but only over a distance (η̄c) that
is increasingly smaller (see again figures 6 and 7), with the fluid behaving close to
Newtonian at greater distance. Of course, the jet behaves more like an ordinary fluid
in the vicinity of the minimum in figure 8.

4.2. The viscous transition layer

In order to match the above inner-layer solution of (4.4) with the far-field flow (u → 1
as η̄ → ∞), an outer viscous transition layer is introduced. By including higher-order
terms in the viscosity function, the correct momentum equation that describes the
flow in the viscous transition layer is derived. This new momentum equation is solved
by matching the transition-layer flow with the inner flow at the interface and with
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the outer potential flow. Thus, the discontinuity in the flow domain is smoothed out
and the inner solution is correctly matched with the outer potential flow. However, if

the boundary-layer thickness is defined as the distance for which f̄
′
= 0.99, for large

impinging jet Reynolds number, the thickness of the inner layer is larger than the
boundary-layer thickness. In fact, as was shown earlier, the thickness of the shear-
thickening transition layer is z = O(Re−2(n−1)) which is very small for large Re, and
the shear-thinning transition layer is located at y = O(Re1−n) � 1, which is far away
from the plate. Therefore, the importance of the inner-layer region far exceeds that
of the transition-layer region, and the latter can therefore be neglected. However, the
matching procedure for shear-thickening fluids is still given for completeness.

For a shear-thickening fluid, the flow field in the transition layer is now determined
by first letting y = yc − Re−2(n−1)ξ̄ . In this case, z = Re−2(n−1)x−1/(n+1)ξ̄ , and ξ̄ = O (1).
The asymptotic form (4.6) and expressions (4.3) suggest the following form of the
velocity components in the outer-layer region, namely

u = 1 + Re−2nŪ1(x, ξ̄ ) + · · · , v = V̄1(x) + · · · , (4.12)

where the higher-order terms do not enter into the subsequent analysis for large Re.
At the interface, the coefficients Ū1(x, ξ̄ ) and V̄1(x) are found to be

Ū1(x, ξ̄ ) = −θkx−n/(n2−1)ξ̄ n/(n−1), V̄1(x) = Āx−n/(n+1) as ξ̄ → ∞, (4.13)

where Ā= (η̄c − β)/(n + 1). In this case, the substitution of u and v from (4.12) into
the streamwise momentum equation (2.4b) leads to

−V̄1

∂Ū1

∂ξ̄
=

∂

∂ξ̄

(
μ̄1

∂Ū1

∂ξ̄

)
, (4.14)

where the viscosity function μ̃ is given by

μ1 =

∣∣∣∣∣
(

∂Ū1

∂ξ̄

)2

− 2
∂Ū1

∂ξ̄

dV̄1

dx
+

(
dV̄1

dx

)2
∣∣∣∣∣
(n−1)/2

. (4.15)

The boundary conditions appropriate to (4.14) are

Ū1 → 0 as ξ̄ → −∞, Ū1 = −θkx−n/(n2−1)ξ̄ n/(n−1) as ξ̄ → ∞. (4.16)

The correct asymptotic decay of the streamwise deviation velocity Ū1 in the far
field (ξ̄ → −∞) and the matching to the algebraic term in the inner layer (ξ̄ → ∞)
are ensured through these conditions. It is convenient to rescale (4.14) by defining
Ū1 = b̄0f̄ , ξ̄ = b̄1ζ̄ , where b̄0 = (1/V̄1)(−dV̄ 1/dx)n and b̄1 = (1/V̄1)(−dV̄1/dx)n−1. Note
dV̄1/dx is negative from (4.13) and b̄0, b̄1 positive. In this case the equation for F̄ (ζ̄ )
becomes

F̄
′
=

d

dζ̄
(|F̄ ′ − 1|n−1F̄

′
), (4.17)

subject to the following boundary conditions:

F̄ → 0 as ζ̄ → −∞, F̄ = −
(

n + 1

η̄c − β

)1/(n−1)

θkζ̄ n/(n−1) as ζ̄ → ∞. (4.18)

Note the prime in (4.17) denotes the total differentiation with respect to ζ̄ . Following

Denier & Dabrowski (2004), a phase diagram in the (F̄
′
, F̄

′′
) plane is given in figure 9.

It is found that a smooth solution exists only when F̄
′
< 0, for which F̄

′′
is strictly

negative. Plots of F̄ versus ζ̄ are given in figure 10, from which it is shown that the
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discontinuity of the solution that arises near the critical position can be smoothed
out within the viscous transition layer.

5. Matching process and composite flow
The flow in the entire physical domain is now obtained upon matching at x= x0

the flows between the developing and fully viscous boundary-layer regions. Given
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Figure 11. Experimental data showing the dependence of m on n and fitting curves: (a)
Shear-thinning solutions: xanthane and hydroxyethylcellulose; (b) Shear-thickening solutions:
ethylene glycol and ethylene glycol in water.

the complex scaling used in the formulation, some of the predictions are more
effectively interpreted using real fluids. Consider then two shear-thinning fluids:
xanthane (Lindner, Bonn & Meunier 2000) and hydroxyethylcellulose (Bird et al.
2002) solutions, and two shear-thickening fluids (Green & Griskey 1968): ethylene in
glycol and ethylene in glycol/water solutions, with different levels of concentration,
including the Newtonian limit. Figure 11 shows the dependence of m on n for each
fluid based on experimental data. For shear-thinning fluids (figure 11a), m tends to
decrease rather sharply with n, whereas for shear-thickening fluids (figure 11b), m
tends to decrease linearly with n. Simple fit of the data allows the unambiguous
interpretation of the results below in terms of n only. In this work, only xanthane
and ethylene in glycol solutions will be used subsequently. The viscosity dependence
on shear rate for these two solutions is given in figure 12 for each fluid, for different



Spread of a non-Newtonian liquid jet over a horizontal plate 431

102
n = 0.4

n = 1.6

0.6

0.8

V
is

co
si

ty
 (

P
a 

s)

1.4
1.2
1.0

Shear rate (s–1)

101

100

10–1

10–2

101 102 103

Figure 12. Viscosity dependence on shear rate for xanthane (solid curves) and ethylene
glycol (dashed curves) solutions for various values of n.

n values. It is important to note from the figure that the ethylene in glycol solution
is simultaneously more viscous and more shear thickening. In contrast, the overall
viscosity of xanthane is higher when it is more shear thinning. This interplay between
the overall level of viscosity and degree of shear thinning will have an intricate
influence on the flow and jet profile.

Before discussing the matching at x= x0, it is useful to summarize the flow structure
in the developing and fully developed boundary-layer regions. In contrast to non-
Newtonian fluids, the flow field for Newtonian fluids in regions (ii) and (iii) is governed
by a similarity solution that is uniformly valid over the entire thickness of the film. For
non-Newtonian fluids, anomalous behaviour arises at the approach of the inviscid flow
or free surface. In region (ii), the viscosity becomes infinite for n< 1, and the velocity
overshoots its inviscid value for n> 1. This difficulty is overcome by including the
elongation terms in the viscosity expression that are otherwise negligible in boundary-
layer or thin-film theory, therefore necessitating more than one layer above the plate.
For n < 1, the flow domain comprises the inner layer, which is dominated by shearing,
and the outer layer, which starts at a height y = O(Re1−n) and extends over the entire
inviscid region. For n > 1, the flow domain is allowed to extend only over a finite
height yc (x) = η̄cx

1/(n+1), which grows with x but remains O(1), since η̄c = O(1) itself.
The boundary-layer thickness δ(x) = η̄δx

1/(n+1) where η̄δ depends on n and satisfies

f̄
′
(η̄ = η̄δ) = 0.99. Thus, η̄δ = O(1), so that yc ≈ δ = O (1). Immediately below yc lies

a transition layer to the inner region of thickness O(Re−2(n−1)). In the fully viscous
region (iii), the viscosity becomes infinite for n< 1 and zero for n> 1 at the approach
of the free surface, therefore there is a need for a transition layer of thickness O(Re−n)
between the free surface and the inner region.

Consider now the matching of the developing and the fully developed boundary-
layer flows at x = x0. For shear-thinning fluids, the outer layer is much farther above
the boundary-layer limit, so that the boundary-layer height in region (ii) can be
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Figure 13. Dependence of the position of transition point, x0Re, on n for shear-thinning and
shear-thickening jets.

matched either onto the interface height or onto the free surface in region (iii) at x0.
Both alternatives will lead essentially to the same result given the small thickness of
the transition layer below the free surface. Similarly for shear-thickening fluids, the
transition layer in regions (ii) is sufficiently thin to be ‘confounded’ with the boundary-
layer height. The transition layer in region (iii) is even thinner with thickness ratio
O(Re−2(n−1)/Re−n = Re2−n); recall that n< 2 (see Acrivos et al. 1960). In sum, it is
emphasized that the primary purpose behind introducing the multi-layered structure
in the developing and fully developed boundary-layer regions (ii) and (iii) is to
smooth out the flow variables throughout the flow depth in each region. Given the
small thickness of the transition layers, the matching between the two regions at
x = x0 is carried out only by matching the boundary-layer height to the film free
surface. This is the only condition required to determine the flow field throughout the
film domain.

Since U (x0) = 1 and δ(x0) = h(x0), the matching position or length of the developing
boundary-layer region, x0, is obtained from (3.10):

x0 =
cn+1

η̄n+1
δ F n+1

n

. (5.1)

Figure 13 shows the dependence of x0 on n, for both shear-thinning and shear-
thickening fluids. x0 exhibits a minimum for shear-thinning fluids at n ≈ 0.23. For
shear-thickening fluids, x0 tends to decrease monotonically and rather sharply near
the Newtonian limit. Consequently, both weakly shear-thinning (n > 0.5) and weakly
shear-thickening (n < 1.5) jets appear to spread more easily. However, this apparent
inconsistency between the two is resolved once the overall viscosity is considered (see
figure 12). The non-monotonic response of the shear-thinning fluid is also a result
of the intricate interplay between the overall viscosity level and the degree of shear-
thinning. However, some caution is in order here when interpreting the results for the
very shear-thinning fluid. Indeed, for n < 0.4, figure 13 indicates that x0 ∼ 1/Re or, in
dimensional terms, x∗

0 ∼ a . This means that the transition point is located too close
to the stagnation or impingement point, which violates the basic assumption for the
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validity of the current boundary-layer formulation. In addition, this corresponds to
relatively small values of n, which in turn corresponds to a range of unrealistic fluids
or fluids with too high a viscosity (see figure 12). More insight into the non-Newtonian
effects is gained once the film profile is obtained (see the following).

The composite film thickness, h(x), and free-surface velocity, U(x), are obtained by
considering first the conservation of mass equation in the developing boundary-layer
region:

x1/(n+1)

∫ η̄δ

0

f̄
′
dη̄ + h (x) − δ (x) = 1 (x � x0) . (5.2)

The integral is evaluated by setting x = x0 in (5.2) and using (5.1). In this case, the
film thickness in the developing boundary-layer region is determined, or

h (x � x0) = 1 + η̄δ

[
1 − Fn

c

]
x1/(n+1). (5.3)

The integration constant l that appears in (3.11) and (3.12) is now determined by first
recalling that U (x = x0) = 1, and evaluating (3.11) at x =x0, leading to

l =

⎧⎪⎨
⎪⎩

(n + 1)η̄n+1
δ − 3n(2n − 1)cn+1

3n(2n − 1)η̄n+1
δ F n+1

n

, n 
= 1
2
,

2.3482 (η̄δ)
−3/2, n = 1

2
.

(5.4)

Hence, the film thickness h(x) is given by (5.3) for x < x0 and (3.12) for x � x0, while
the free surface velocity becomes U (x <x0) = 1, and is given by (3.11) for x � x0. It
is observed that l is found numerically to be positive for n > 1/2. Expression (5.4)
clearly shows that l is negative for n < 1/2. Figures 14 and 15 show the variation
of the film thickness h(x), boundary-layer thickness, δ(x), and shear stress at the
plate, τ0 (x), with distance from impingement, for shear thinning and shear-thickening
fluids, respectively. Here, the more suitable position variable, xRe = x∗/a is used. The
location, x0Re, of the transition between the developing and fully developed flows
is also indicated. Again, the fluids chosen are those reported in figure 12. Generally,
h(x) and τ0 (x) increases and decreases, respectively, with x owing to resistance from
the plate, at a rate that is stronger for the more viscous fluid. The growth of the
boundary-layer thickness is commensurate with that of the free surface, but δ(x)
grows at a higher rate than h(x). The shear stress decreases monotonically with x. For
shear-thinning fluids, figure 14(a) shows enhanced thickening of the film in the fully
viscous region (x > x0), especially for the more viscous and strongly shear-thinning
fluids (n = 0.4; see also figure 12), accompanied by a relatively milder drop in shear
stress (figure 14b). However, there is a sharp drop in shear stress further downstream
for n =0.4, pointing to the strong difficulty of the fluid in spreading, leading essentially
to a plug-flow scenario. Recall that, in the developing boundary-layer region (x < x0),
the free-surface velocity is always equal to one-keeping the stress level higher than
for x > x0, where the surface velocity decreases with x. Note the similarity between
the pronounced increase in film thickness in region (iii) shown in figure 14(a) and
the steep boundary-layer in the stagnation-flow region (i) depicted schematically in
figure 1. The profiles for shear-thickening fluids are depicted in figure 15. In this case,
figure 15(a) shows the gradual increase in film height and boundary-layer thickness
with viscosity and level of shear thickening. More importantly, figure 15(b) shows
the very rapid decrease in shear stress at large distance for the more viscous fluids
(n =1.6). Observe the difference in qualitative response for strongly shear-thinning
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Figure 14. Influence of shear-thinning effect on: (a) the film thickness, h(x), and the
boundary-layer thickness, δ(x); (b) the shear stress at the plate, τ0(x). Here, U0 = 8m s−1,
a = 0.008 m and ρ = 998 kg m−3. Solid circles show location of transition point.

fluids compared to the weakly shear-thinning fluids. Consider again the fluid with
n= 0.4 from figure 14. The flow exhibits a change in concavity for h(x) and a change
in slope for τ0 (x) at the transition point. The emergence of a discontinuity does not
occur for moderately shear-thinning fluids or shear-thickening fluids. In sum, highly
viscous fluids that are strongly shear thinning (see figure 12 for n= 0.4) spread with
difficulty, even compared to highly viscous and simultaneously highly shear-thickening
fluids. This illustrates the intricate flow behaviour resulting from the interplay between
the shear-thinning character and the overall viscosity of the fluid.

Finally, the flow nature is further explored by showing the velocity profiles. Although
the similarity profiles in figures 3 and 6 should allow the inference of the flow field, they
do not lend themselves to immediate physical interpretation. Figure 16 displays the
streamwise velocity distribution at difference locations. The profiles are shown over the
same distance for typical shear-thinning (n = 0.6) and shear-thickening (n = 1.4) fluids
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Figure 15. Influence of shear-thickening effect on: (a) the film thickness, h(x), and the
boundary-layer thickness, δ(x); (b) the shear stress at the plate, τ0(x). Here, U0 = 5m s−1,
a = 0.008 m and ρ = 998 kgm−3. Solid circles show location of transition point.

in figures 16(a) and 16(b), respectively. Clearly, the difficulty of the shear-thinning
fluid in spreading is correlated with a smaller boundary-layer region.

6. Approximate solution
In the previous section, the numerical solution for the developing boundary-layer

flow (x < x0) was sought and matched with the analytical solution for the fully
developed viscous boundary-layer flow (x > x0) at the transition point x0. In fact,
the solution for the developing boundary-layer flow can be sought approximately
using the Kármán–Pohlhausen momentum integral method, which has been used by
Watson (1964) for the spread of a Newtonian jet along a flat plate. Owing to its
relative simplicity and good accuracy, this method can be interesting and insightful,
allowing direct comparison with the (exact) numerical solution for the spreading of a
non-Newtonian jet along a flat plate. This will help to assess the range of validity and
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accuracy of the approximate procedure for non-Newtonian jets. Following Watson
(1964), the approximate solution is sought by first assuming that the velocity profile
at the transition point x0 retains the same form (3.3) as for x > x0. Thus, let

u(x < x0, y) = f (η) with η = y/δ, (6.1)

where f (η) is governed by (3.7). In this case, the boundary-layer thickness is obtained
by first integrating the momentum equation (2.5), or

d

dx

[∫ δ

0

(u − u2) dy

]
= (uy)

n|y=0. (6.2)

Using (6.1) and (3.8), (6.2) leads to the following equation for δ(x <x0):

δnδ′ = Kn, (6.3)



Spread of a non-Newtonian liquid jet over a horizontal plate 437

where Kn =3ncn+1/(3nFn − n − 1). Equation (6.3) is now integrated subject to the
condition δ(x = 0) = 0 to give

δ (x � x0) = [(n + 1)Knx]1/(n+1) . (6.4)

When the position x0 is reached, the boundary-layer absorbs all of the flow. In this
case, U (x = xo) = 1 and h(x = x0) = δ(x = x0). Hence, (3.10) leads to

δ(x0) = c/Fn, (6.5)

which together with (6.4) gives the transition location, namely

x0 =
cn+1

(n + 1) KnF n+1
n

. (6.6)

The volume flow rate is the sum of the flows inside and outside the boundary-layer,
which gives

δ

∫ 1

0

f (η)dη + h − δ = 1. (6.7)

The integral in (6.7) is determined from (3.8), and the film thickness in the developing
layer becomes

h (x � x0) = 1 +

[
1 − Fn

c

]
[(n + 1)Knx]1/(n+1) . (6.8)

Finally, the integration constant l that appears in (3.11) and (3.12) can now be
determined by recalling that U (x = x0) = 1, and substituting x0 from (6.6) into (3.11),
namely

l ≈ (n + 1)2 Kn − 3n (2n − 1) cn+1

3n (n + 1) (2n − 1) KnF n+1
n

. (6.9)

The shear stress at the plate defined by (3.15) now becomes

τ0 (x < x0) =
[f ′(0)]n

Re [(n + 1) Knx]n/(n+1)
. (6.10)

In order to assess the accuracy of the above approximate solution, it is convenient to
introduce the shear stress coefficient, which is defined as

Cn =
τ0

Re−1x−n/(n+1)
=

{
cn[(n + 1)Kn]

−n/(n+1) (approximate),

[f̄ ′′(0)]n (numerical).

(6.11a)

(6.11b)

Here the approximate expression is obtained from (6.10) by using f ′ (0) = c, which is
obtained from (3.8) at η =0, while the numerical expression is obtained from (4.11).
Figure 17 shows the dependence of Cn on the power-law index, n, and the comparison
between the approximate and exact values as n is varied. There is generally good
agreement between the two curves for moderately shear-thinning fluids and shear-
thickening fluids. There is a growing discrepancy for strongly shear-thinning fluids
as n decreases. Reasonable agreement is also consistent when other variables such
as the film thickness, velocity at the free surface and shear stress at the plate are
compared. However, as shown in figure 18, the approximate prediction for the velocity
gradient f̄ ′′ (0) at the plate becomes generally inaccurate for shear-thinning fluids.
This discrepancy has also been observed by Acrivos et al. (1960) in their study on
the boundary-layer flow of power-law fluids along a flat plate, suggesting that the
momentum integral method is not suitable for heat transfer calculations involving
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non-Newtonian fluids since the velocity gradient f̄ ′′ (0)is the essential parameter in
this case. In sum, the approximate solution appears to be reasonably accurate for the
isothermal flow of practical non-Newtonian fluids. This is further confirmed when
the results for the hydraulic jump are examined.

7. Hydraulic jump
In this section, the flow in the hydraulic jump region, region (iv), is considered

for planar jumps. Following Watson (1964), the surface-tension effect is neglected,
and the flow beyond the jump is assumed to be unidirectional. Consequently, flow
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separation and the associate recirculation eddy are not considered. For circular
jumps, the surface-tension effect is of radial and planar character, associated with
the azimuthal curvature of the jump and the local curvature(s) in the plane of the
jump, respectively. The flow structure in the vicinity of the jump depends on the
jet strength or the distance of the jump from impingement. Two types of circular
jump flow are usually identified in practice (Bush & Aristoff 2003). Type I jump, is
of close proximity to impingement, and is thus marked by a jump of small radius
and unidirectional flow at the surface, with boundary-layer separation beyond the
jump. Type II jump, occurs farther from impingement, exhibiting reverse surface flow
adjoining the jump, with wider radius and higher jump. Surface tension is shown to
play a more significant role in Type I jumps as a result of the strong radial curvature.
Surface tension is also expected to be important in Type II jumps as a result of the
severe curvature at the nose and tail in the plane of the jump. Experiment, however,
does not seem to suggest a prominent role for surface tension in this latter case (see
the following).

In his theoretical development, Watson (1964) neglected the influence of surface
tension, and assumed that the flow beyond the jump was unidirectional. Watson’s
theory appears to be adequate for the flow in the thin-film region. However, in the
vicinity the hydraulic jump, the agreement has ranged from good to poor, being
generally good when the jump radius is more than ten times the depth beyond the
jump (Type II), and poor in the opposite limit of small jump radius (Type I). In their
experimental study of water jumps, Liu & Lienhard (1993) observe that Watson’s
predictions are least satisfactory in the limit of a relatively weak jump, specifically
when the ratio of the layer depths after and before the jump is small. Craik et al.
(1981) focused on this small jump regime; their data for the jump radius thus
underscored the shortcomings of Watson’s theory. Bush & Aristoff (2003) revised
Watson’s predictions for the Type I jump by including only surface tension due
to azimuthal curvature of the jump, and their predictions improved the agreement
between experiment and theory, particularly in the weak-jump regime. In sum, the
general consensus is that Watson’s theory is reasonably accurate for Type II flow,
despite the presence of severe curvature in the plane of the jump. This may be
explained through the presence of strong separation at the jump tail, keeping the
radial flow component essentially continuous, with the surface-tension effect being
only local and far from the separation regions. Consequently, the present planar
formulation and results can be regarded as adequate representation for large-radius
circular jumps, even with the surface-tension effect neglected.

The position of the hydraulic jump, x = xj , is determined by equating the rate of
change of momentum to the force associated with the difference in pressure that
arises from the elevation change. This assumption is legitimate provided that the
width (measured in the streamwise direction) of the jump is small so that skin friction
can be ignored. In this case, the dimensionless form for the condition of momentum
is expressed as∫ h

0

u2 dy−
∫ H

0

ū2 dy =
1

Fr

(∫ H

0

y dy −
∫ h

0

y dy

)
≈ H 2

2Fr
. (7.1)

Note that ρU 2
0 is taken as the pressure scale, and Fr = U 2

0 /ga is the Froude number at
impingement, where g is the acceleration due to gravity. Here h and H are the depth
on the inside and outside of the jump, respectively (see figure 1), and u and ū are the
corresponding streamwise velocities. Owing to the complicated form of the expression
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for h, it is undesirable to include the term h2/2Fr , which is the pressure thrust on
the inward side of the wave jump. This term, however, is only O(h2/H 2) compared
with the thrust on the outward side. Also, the momentum outside the wave, which
is O (h/H ) compared with that inside, will be included only approximately since it
is assumed that the speed of flow ū immediately outside the jump is uniform, and
therefore given by ū= 1/H from the conservation of mass. In this case, (7.1) becomes

2Fr + H 3

2HFr
=

∫ h

0

u2 dy (7.2)

It is necessary to evaluate the right-hand side of (7.2) separately for xj > x0 and for
xj < x0, since the jump may occur at any point in the development of the boundary-
layer. When xj � xo, the substitution of the similarity velocity profile (3.3) into (7.4)
leads to

2Fr + H 3

2HFr
= U 2h

∫ 1

0

f 2(η) dη, (7.3)

where the integral can be evaluated from (3.8), and then after using (3.11) and (3.12),
(7.3) becomes

2Fr + H 3

2HFr
=

(
xj + l

Jn

)1/(1−2n)

, (7.4)

where Jn =(n + 1)2n/((3n)2n (2n − 1) F 3n
n ). Recall that l can be obtained numerically

from (5.4) or approximately from (6.9). When xj < xo, the flow upstream of the jump
consists of the developing boundary-layer and external inviscid flow, and must satisfy∫ h

0

u2 dy =

∫ δ

0

u2 dy + h − δ, (7.5)

where u, h and δ are obtained numerically as in § 5 or approximately as in § 7. If the
numerical solution is used, (7.2) and (7.5) give

2Fr + H 3

2HFr
=

(∫ ηδ

0

[
f̄

′
(η)

]2

dη − Mn

)
x

1/(n+1)
j + 1, (7.6)

where Mn = ηδFn/c, and the integral can be obtained by matching (7.6) with (7.4) at
xj = x0. On the other hand, if the approximate solutions for u, h and δ are used, (7.5)
becomes

2Fr + H 3

2HFr
= Nnx

1/(n+1)
j + 1, (7.7)

where Nn = − (n + 1) cn [(n + 1) Kn]
−n/(n+1). Figure 19 shows the influence of a non-

Newtonian effect on the relation between the position of hydraulic jump xjRe

and its height H. The influence of the Froude number can be incorporated if
(2Fr + H 3)/2HFr is plotted instead of H. It is shown that generally the hydraulic
jump occurs earlier as the depth of flow downstream of the jump H increases. For
both shear-thinning fluids (figure 19a) and shear-thickening fluids (figure 19b), the
hydraulic jump occurs earlier when the flow is more viscous, experiencing more
friction from the plate. In this case, the jet spreads with difficulty. In particular,
figure 19(a) indicates that it is the level of viscosity and not the degree of shear
thinning that dictates the position of the hydraulic jump (see also figure 12). This is in
sharp contrast to the situation in figure 14(a) where shear thinning has a more drastic
influence on the jet profile. Comparison between the numerical and approximate
results is also shown in figure 19, which clearly hints to good agreement, confirming
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Figure 19. Dependence of jump height, H, on jump position, xjRe, for (a) shear-thinning

jets (U0 = 8m s−1), and (b) shear-thickening jets (U0 = 5m s−1). Here a = 0.008 m and ρ =
998 kg m−3. Comparison between exact (solid curves) and approximate (dashed curves) is
shown, along with the position of the transition points (solid circles).

the earlier observation about the validity of the approximate approach for isothermal
non-Newtonian spread.

8. Conclusion
This theoretical study focuses on the spread of a vertical non-Newtonian jet

impinging on a solid flat plate. A hydraulic jump is assumed to form downstream
from the impingement point. Both shear-thinning and shear-thickening fluids of the
power-law type are considered. The flow domain is divided into three regions over the
streamwise direction x, namely, a developing boundary-layer region (with potential
upper layer), a fully developed viscous boundary-layer region (extending between the
plate and free surface), and a hydraulic jump region.
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In the fully developed viscous boundary-layer region, a similarity solution is
obtained for both the free-surface velocity and film thickness, and the flow is
shown to develop into a two-layer structure. The outer thin viscous layer is required
to smooth out the singularity in viscosity at the free surface, allowing the inner
algebraically decaying solutions to be matched smoothly with the solution near the
free surface. Similarly, a similarity solution is sought numerically and approximately
in the developing boundary-layer region. It is demonstrated that a viscous adjustment
layer is required in order to ensure a smooth asymptotic matching to the far outer-
field flow solution. The flow in the entire physical domain is obtained upon matching
the flows between the developing and fully viscous boundary-layer regions.

Given the complex scaling used in the formulation, two real-fluid solutions are
used to examine non-Newtonian effects, namely the shear-thinning xanthane and the
shear-thickening ethylene in glycol, and simple fit of the experimental data allows
the unambiguous interpretation of the results in terms of the power-law index n.
Generally, the film thickness and shear stress at the plate increases and decreases,
respectively, with x owing to resistance from the plate, at a rate that is stronger for
the more viscous fluids. The growth of the boundary-layer thickness is commensurate
with that of the free surface, but at a higher rate, whereas the shear stress decreases
monotonically. For shear-thinning fluids, more viscous and strongly shear-thinning
fluids spread with difficulty, even compared to highly viscous and simultaneously
highly shear-thickening fluids. This illustrates the intricate flow behaviour resulting
from the interplay between the shear-thinning character and the overall viscosity of
the fluid. Comparison between the approximate and the numerical solutions shows
generally good agreement, indicating that the approximate solution is reasonably
accurate for the isothermal flow of practical non-Newtonian fluids. Finally, a relation
is derived between the position and height of the hydraulic jump. Generally, the
hydraulic jump is found to occur earlier as the depth of flow downstream of the
jump increases. In contrast to the film profile and velocity, non-Newtonian effects
seem to have little qualitative influence on the position of the hydraulic jump, which
simply depends on the level of viscosity and not on the rate of shear-thinning or
shear-thickening.
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